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Abstract 

The Office of the Deputy Chief of Staff, Personnel (ODCSPER), is charged with man- 

aging the Army's military strength levels and forecasting future strength levels for planning 

purposes. ODCSPER is reformulating its Enlisted Loss Inventory Model (ELIM), which 

projects losses of first-term enlisted personnel. These projections in turn are passed to 

a program which is designed to maintain the Army's strength as closely as possible to 

prescribed levels. These projections are based on characteristic groups, a set of sub-groups 

of recruits who are similar in terms of sex, education level, term of service and mental cat- 

egory; the presumption has been that attrition rates ought to be different between groups. 

However in recent years ELIM projections have been unsatisfactory. 

This study used Classification and Regression Tree methodology (CART) to generate 

improved c-groups for predicting not only first-term attrition but also early-term behavior 

and re-enlistment. The most important variables by which to create these groups turn 

out to be race and gender. Generally white women have the lowest term completion and 

re-enlistment rates; those for non-white women and white men are similar; and those for 

non-white men are the highest. 



Executive Summary 

The Office of the Deputy Chief of Staff, Personnel (QDCSPER), is charged with man- 

aging the Army's military strength levels and forecasting future strength levels for planning 

purposes. These forecasts have a great impact on the Army's Military Personnel Account 

(MPA); this single item represents about one third of the Army's budget and is the largest 

single account in the Department of Defense. 

ODCSPER has a set of computer programs that make up its military strength manage- 

ment system. This redesigned system will use current hardware and software technology, 

and employ more recent, and easier to use, design concepts. 

One piece of the system is the the Enlisted Loss Inventory Model (ELIM), which 

projects losses of first-term enlisted personnel. These ELIM projections are used in turn 

by an optimization model (COMPLIP, Computation Of Manpower Programs using Linear 

Programming) which is designed to maintain the Army's strength as closely as possible to 

prescribed levels. 

This current ELIM model bases its projections on characteristic groups (c-groups), 

whose structure has remained unchanged since the strength management system was ini- 

tially implemented. These c-groups partition first-term enlisted personnel according to 

sex, education level, mental category (AFQT group) and term of service in a specific way. 

In recent years, forecasts made by the ELIM model have not been satisfactory; this has 

caused ODCSPER to consider alternative partitions of first-term enlisted personnel. 

This study used Classification and Regression Tree methodology (CART) to generate 

improved c-groups; these new c-groups are designed to differ in first-term retention rates, 

to the maximum extent possible. For this task the CART technique used only information 

about whether the recruit did or did not complete his or her first term. A separate analysis 

tried to distinguish three outcomes: non-completion of the first term, completion without 

re-enlistment, and both completion and re-enlistment. Finally, this method was also used 

to characterize differences in early-term attrition. 

The CART methodology was able to define new c-groups that outperform the old in 

terms of misclassification rate. Addtionally, they have the desirable property of being less 

dissimilar in size than the current c-groups. Most interesting is the set of attributes that 
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the method selects to define the groups. The most important distinction turns out to be 

gender: the rate of term completion for women is about 45% in the particular data set we 

employed, while that for men is about 60%. (The actual numbers vary a bit from year to 

year, but the difference always exists.) Among women, race matters; white women have a 

higher attrition rate than non-whites. There is a disparity between white and non-white 

men that is somewhat smaller. Additional "splits" between groups are made on variables 

like length of term of service, AFQT scores, and level of education. 

The same general trend holds true when considering re-enlistment together with reten- 

tion. White women have the lowest re-enlistment rates; non-white women are similar to 

white men; and non-white men have the highest rates.The various college bonus programs 

are associated with lower re-enlistment rates, as we might expect, but interestingly the 

college bonus does not have much effect on term completion. (This may be partly because 

the bonus money is, in many cases, completely paid before the term is completed.) An- 

other important variable is the Career Management Field, which describes generally the 

recruit's function in the Army. 

Finally, the same race and gender distinctions hold true when considering attrition 

early in the first term. Graphs of attrition rate against month show that every group has 

a peak of attrition in the first few months of the first term; the rate then drops down to 

a steady state in about month 9. The peak is highest for white women and lowest for 

non-white males. The steady-state attrition rate, after month 9, is again highest for white 

women; for the other three the rates are essentially equal and constant over the remainder 

of the first term. 

One reason that women in general, and especially white women, may have higher 

attrition rates is that their terms of service tend to be longer. Of course this is not 

relevant to the observation that the early-term rates are high. Still, white women have 

longer term lengths, on average, than other groups, for reasons that are not clear, and 

non-white men the shortest. Gender differences may be partly due to contract rates that 

differ by CMF since some CMFs are not open to women. However, the reasons for any 

racial differences are not known. In any case, the race and gender differences are real. 

Although a larger proportion of women than men sign up for four-year terms, for example, 

attrition rates are highest for white women when controlling for length of term. 

ill 



1    Background 

The Office of the Deputy Chief of Staff, Personnel (ODCSPER), is charged with man- 

aging the Army's military strength levels and forecasting future strength levels for planning 

purposes. These forecasts have a great impact on the Army's Military Personnel Account 

(MPA); this single item represents about one third of the Army's budget and is the largest 

single account in the Department of Defense. 

For more than 20 years the Army has employed essentially the same military strength 

management system. It is used for modeling near-term needs for, and adjustments to, 

manpower levels, as well as for longer-term projections. This system contains a suite of 

individual computer programs which are loosely integrated overall and built on outdated 

hardware and software platforms. Routine modeling chores are time-consuming to perform, 

and the system is difficult and expensive to maintain or enhance. Long training periods 

are required to familiarize analysts with its complex user controls. ODCSPER is currently 

sponsoring a new design for its military strength management system to overcome these 

difficulties. The redesigned system will use current hardware and software technology, 

employing more recent, and easier to use, design concepts. 

Much of the structure of the current military strength management system will be re- 

tained in the new system. In particular, the Enlisted Loss Inventory Model (ELIM) for 

projecting losses of first-term enlisted personnel will be maintained. These ELIM projec- 

tions are used in turn by an optimization model (COMPLIP, Computation Of Manpower 

Programs using Linear Programming) which is designed to maintain the Army's strength 

as closely as possible to prescribed levels. This structure will also be retained. 

This current ELIM model bases its projections on characteristic groups (c-groups), 

whose structure has remained unchanged since the strength management system was ini- 

tially implemented. These c-groups partition first-term enlisted personnel according to sex, 

education level, mental category (AFQT group) and term of service in a specific way. They 

were originally designed, in part, to identify differences in first-term retention behavior, 

which in turn was expected to increase accuracy in short- and long-term forecasting accu- 

racy. In recent years, forecasts made by the ELIM model have not been satisfactory; this 



has caused ODCSPER to consider alternative partitions of first-term enlisted personnel. 

This study used Classification and Regression Tree methodology (CART) to generate 

c-groups for use with ODCSPER's new Military Strength Management System; these 

new c-groups are designed to differ in first-term retention rates, to the maximum extent 

possible. As this project continued, interest was also expressed in categorizing differences 

in retention in the early months of a recruit's first term. In addition, interest arose in 

groupings which distinguished three groups: those who did not complete the first term, 

those who did complete the first term but did not re-enlist, and those who did choose to 

re-enlist at the completion of the first term. CART has also been used for these efforts. 

The CART methodology is briefly described in the following section. 

2    Description of CART 

The basic approach used in CART was developed in Breiman et al. (1983) and in 

earlier papers by these authors. To briefly describe this methodology, assume we have a 

group of 10000 first-term enlistees and, for each, we have the following information: 

a. Sex — Male or Female 

b. Race — Three groups: W, N, 0 

c. Age — Calendar age at start of term, in months 

d. Education — Grouped into 5 categories: GED,<HS,HS,C2,>C2 

e. Term — 1 if term of service completed, 0 if not 

Any number of additional variables could equally well be accommodated, but to keep the 

discussion simple we shall refer only to those listed above. Our goal is to partition the 

10000 enlistees into a number of groups; the groups have no members in common and 

together account for all 10000 enlistees. We want the proportions of persons to complete 

their term of service (within a group) to differ as much as possible from one group to 

another. 

CART attacks this problem in the following way. Assume that 5800 of the enlistees do 

in fact complete their term of service. Thus, in the full group, 58% complete their term 



of service. We want to describe the categorical variable Term (either term is completed 

or not) using the values of the other available variables: Sex, Race, Age, Education. Of 

these, Sex, Race and Education are categorical and Age is "continuous" or numeric. This 

is done by CART using a classification tree, since Term is taken to be categorical (not 

continuous). For classification trees, CART repeatedly splits any given group according 

to the value of the group's deviance; for the full group of 10000 enlistees being discussed 

this deviance is -2 In ((.58)5800(.42)4200) = 13605.84. This classification tree deviance is 

actually -2 times the log of the likelihood function, appropriate if the 10000 enlistees 

behave like independent Bernoulli trials with constant probability .58 of re-enlisting. 

If the initial group of 10000 is split into any two groups of sizes nu n2 (where ni + n2 = 

10000), we can likewise compute the deviance for each of the two groups. The sum of these 

two deviances can easily be shown to be no larger than the deviance for the original group of 

10000 (and generally it will be smaller). In building its classification tree, CART considers 

each of the available variables (Sex, Race, Age, Education) in turn; for the categorical 

variables CART effectively partitions the levels into 2 sets (in all possible ways), uses each 

of these to split the enlistees into two groups and for each evaluates the resulting sum 

of the two group deviances. For continuous variables, CART partitions the range of the 

variable into two parts (between all possible successive values of the variable), again splits 

the enlistees accordingly and evaluates the sum of the two group deviances. That variable, 

and the split on that variable which produces the smallest sum of the two group deviances, 

is then used to partition the "root node" (original collection of all 10000 enlistees) into 

two "child nodes". 

The same process is then applied to each of these two child nodes; i. e., each child is 

now a parent node and all variables are again examined to find that variable, and the split 

of that variable, which results in the smallest possible sum of the deviances for the two 

child nodes. This then is used to split each of the two original child nodes into two new 

child nodes, now giving 4 nodes, and the process is again repeated. This process could 

conceivably be continued until each node is "pure" (every person in the node acts the same 

way with respect to completion of term and the node deviance is 0). The usual computer 

implementations of CART continue the node splitting until the number of cases in the 

node is "small" (say 10 or fewer) or until the difference between the parent deviance and 



the sum of the child deviances is "small" (say the drop in deviance is less than 1% of the 

parent deviance). The results of this procedure can be pictured as a classification tree, like 

Figure 1. The root node (at the top) contains the full collection of enlistees; the variable 

and value for that variable which causes the biggest drop in deviance is identified on the 

lines dropping from the root to two child nodes, and so on. When the process is stopped, 

the final nodes (rectangles) are called the leaves and the number of these leaves is called 

the size of the tree. The percentage written in each node is the proportion of enlistees in 

the node that completed the first term; the number written below each node is the number 

of enlistees contained in the node. 

Thus, as seen in Figure 1, the first (most important) split is on sex, with 60.5% of 

males and only 44.9% of females completing their first term. The white females are then 

split off from the other races, giving two leaves describing female behavior. The males are 

first split on education, then on age and finally (for the better educated, older males) split 

on the race variable, giving a six leaf tree. 

Different trees are frequently compared using their misclassification rate; for a classifi- 

cation tree, this computation assumes that everyone in the same node is classified the same, 

determined by the classification with the greatest frequency in the node. Thus, for the case 

of modeling completion of term, each node is classified in two ways: re-enlist (if more than 

50% choose this option) or don't re-enlist (if less than 50% choose to re-enlist). For the 

root node at the top, the misclassification rate is .42 (the proportion not re-enlisting). The 

tree misclassification rate is given by summing the numbers misclassified across all leaves 

and dividing this total by 10000, the number of enlistees. Thus, for the tree in Figure 1, 

this numerator is 

•367(989)+.412(580)+.466(691)+.344(1897)+.401(5512)+.305(331)=3887, 

so the tree misclassification rate is .3887, about 92% of the misclassification rate at the 

root. 
It is clear that none of the leaves in Figure 1 are pure. Why does this tree have only six 

leaves? The suggested way to determine the "best" size for a tree is to use the procedure 

called cross-validation. The default usage of this procedure is to take the original data set 

(10000 enlistees) and randomly split it into ten equal-size groups (1000 per group). Each 

group of 1000 is held out, in turn, and the remaining 9000 are used to build trees of each 



Figure 1: Classification tree for 10000 first-term enlistees. 

~58%~ 

10ÜOO 

S:F 

Ed:<HS,GED 
Ed:,>C2,C2,HS 

5512 331 
Example of classification tree. Within each node is the proportion of recruits in that 
node who re-enlisted; beneath each node is the number of recruits in that node. Re- 
cruits are broken into groups based on Sex (S), Race (R), Education level (ED), and 
Age in Months (Age). For example, of 989 white females (leftmost node), 36.7% 
re-enlisted. 

possible size (from 2 to roughly 170 leaves). The 1000 cases held back are dropped down 

each tree, which then determines a classification for each case, and the resulting deviance 

is computed. Thus for trees of size 2, 3, 4, ... we have 10 deviances and can find the 

minimum deviance of the 10, for each size. Then one can evaluate the penalized deviance, 

a weighted sum of the minimum deviance and the number of leaves in the tree, and plot 

the result, as in Figure 2. This has the typical shape of going through a minimum (at six 



Figure 2: Cross-validation plot for tree in Figure 1. 
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Example of cross-validation. For each size of tree (that is, for each number of terminal 
nodes) there is an estimate of the deviance for trees of that size, penalized by the size. 
The "best" size is the one for which the penalized deviance is smallest. In this case, 
the "best" tree has six leaves. 

leaves for these data) and then increasing. Since the minimum occurs at six leaves, we 

have some evidence that this may be the "best" size to use. This procedure is intended to 

avoid over-fitting the data, using a larger size tree than may be called for. 

3    Data available 

The initial data provided for this study were taken from the small tracking file, an 



ODCSPER contractor-maintained data base. All first-term enlistees, from calendar year 

1989 through June 30, 1987, were included in the data file. This file contains one line per 

enlistee, for this period, and includes social security number for identification purposes. 

The following six variables were included for each enlistee: 

1. AFQT score (numeric, range 1 through 99), 

2. race (4 codes), 

3. sex, 

4. term of service (2 through 6 years, plus missing), 

5. civilian education code (33 different levels), and 

6. age in months at start of term. 

Each enlistee record also included "trailers", identifying various personnel transactions 

(completed term, immediate re-enlistment, reason discharged from service, among others) 

and the month in which the transaction occurred. The number of these trailer records 

varied from 1 (marking the person as nonprior service in month 1) and could go as high 

as 13. The file, and the trailer records in particular, were current through June 30, 1997. 

Thus, if a person joined the service in May, 1990, with a 6 year term, it is possible from 

this file to determine whether (s)he completed the first term of service. It is not possible 

to know with certainty whether a person who joined the service in January, 1996, with a 

two year term, completed the first term of service using this file. 

Initial efforts concentrated on building classification trees to model completion of term, 

using the six variables listed above. While the trees did reduce the misclassification rate 

and the deviance, discussions during the first presentation of the work performed lead 

to a number of suggestions and clarifications. Primary among these was the fact that 

much of the first term attrition occurs during the early months after basic training; this 

phenomenon has been studied and is described later. Discussion also centered on the 

possibility that other demographic variables beyond the six listed above might prove useful 

in describing first term attrition; additionally, interest was expressed in using CART to 



model re-enlistments for first-term enlistees, in addition to modeling completion of term. 

These topics will also be discussed. 

The small tracking file contains only the demographic variables listed earlier. Thus, 

the addition of more variables for use with CART required new sources of data, which 

could be melded with the existing records using the social security numbers. The Office of 

Economic and Manpower Analysis (OEMA) provided two useful files for this study. The 

first of these provided the ZIP code for home of record of the first-term enlistees, their 

Military Occupational Specialty (MOS) codes, and the length of time spent in DEP (de- 

layed entry program) for all persons joining the Army during calendar years 1991 through 

1997. The home of record (ZIP code) is frequently missing for enlistment dates prior to 

1994. Additionally, OEMA provided information on losses to first term enlistees which 

were recorded between July, 1997 and May, 1998, to allow more up-to-date determination 

of completion of first term of service. 

The United States Army Recruiting Command (USAREC) also provided data on non- 

prior service enlistees who joined during calendar years 1991 through 1997. These data 

included social security numbers, ages, as well as enlistment bonus and Army college fund 

information. These data were requested for two specific purposes. The first of these was to 

provide missing ages of enlistees (especially for the 1994 cohort) which were not available 

in the small tracking file. The second purpose was to investigate whether enrollment in 

the Army college fund program would prove useful in CART modeling of completion of 

first term and/or re-enlistment. 

For use as variables in employing CART, the ZIP codes were melded into 6 regional 

groups: Northeast, Southeast, Midwest, Mountain, Far West and Other (Alaska, Hawaii, 

Puerto Rico). The MOS labels were combined into twelve Career Management Fields, using 

information provided by an ODCSPER contractor, modified by PERSCOM's Enlisted 

MOS Structure Chart dated 7/31/98. The USAREC data was used to construct a college 

fund variable with 4 levels (no college fund, two-year college fund, three-year college fund, 

four-year college fund) for use with CART. This information was also used to fill in missing 

entries for term of service; that is, if an enlistee had a missing term of service in the small 

tracking file, and (s)he was listed as participating in the three-year college fund, then the 

missing term of service was replaced with a three-year term. No existing terms of service 



(from the small tracking file) were changed using this college fund variable, although there 

are a few instances in which the two do not agree. 

4    CART description of completion of term 

As mentioned earlier, the original goal of this research was to use CART to model the 

completion of term for non-prior service enlistees. This requires knowledge of whether or 

not particular individuals completed the first term of service; since this first term of service 

can be anywhere from two to six years, it is clear that the data needed must span several 

years of observation. Table 1 gives a description of the available enlistee data for fiscal 

years 1991 through 1996, using trailer records from the small tracking file, as well as the 

OEMA data on enlistee losses. 

Table 1. Data available on completion of term 
Calendar year Term(s) missing % of recuits with 

missing completion information 

1991 None 0 
1992 6 year 6.6 
1993 5,6 year 12.2 
1994 4,5,6 year 50.5 
1995 3,4,5,6 year 95.2 

Presumably the tendency for first-term enlistees to actually complete their contract 

term may change over time. This in turn would suggest that current and future behavior 

should be best modeled by using the most recent possible data. Accordingly, it was decided 

to primarily use the calendar year 1993 data in the CART model for completion of term. 

This data set is complete, except for the enlistees with five- and six-year terms, as noted 

in Table 1. To estimate their behavior, the six-year term enlistees from 1991 were pooled 

with the five-year term enlistees from 1992. CART was used to build a classification tree 

describing completion of term using this pooled data set. The variables used in building 

this tree were AF (AFQT score), R (race), S (sex), L (length of term) Age (age in months), 

DEP (time spent in the Delayed Entry Program), CMF (career management field), and 

Ed (education level). The resulting best ten-leaf tree is presented in Figure 3. 

In total, 48.6% of these enlistees completed their first term (from the root node). This 

root splits first on sex, with females going left and males going right; the completion rate 



Figure 3: CART predictions for five- and six-year term completions. 

CMF:Armor,lnf,Serv,Supp 

2310 733~ 
This tree is used to predict completions of five- and six-year terms in the 1993 data, 
for which the true completion status is not available. There was a 46.1% rate of term 
completion among white females with more than two years of college who entered in 
1991 for six years or in 1992 for five years. Therefore we assumed that 46.1% of similar 
women who entered in 1993 for five or six years term would complete their terms. 

for males (53.8%) is considerably larger than the rate for females (36.3%). These nodes are 

subsequently split, giving a total of five leaves for females and five for males. Both sexes 

split on race and on CMF (at different levels); females also split on education, while males 

have splits on AFQT score and DEP length. It is interesting that L, length of term, is 

not a splitting variable for either sex. The two different terms of service behave relatively 

similarly, for both sexes. 
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This tree in Figure 3 was used to predict completion of term for 1993 five- and six-year 

enlistees. That is, if we look at the lower left leaf we find that 46.1% of the white females 

with more than two years of college education completed their term. Thus, 46.1% of the 

1993 cohort falling in this category, with five- or six-year terms, were randomly selected as 

completing their terms. Similarly, from the rightmost leaf we see that 47.3% of the males, 

with AFQT score above 68, and CMF of Armor, Infantry, Service or Support completed 

their'term. For the 1993 five- and six-year term enlistees, 47.3% of those falling in this 

group were randomly selected as having completed their terms. Each of the other eight 

terminal leaves were used in the same manner. 

This gives a 1993 data set with known completions of term for the two-, three-, and 

four-year term enlistees, and predictions of completions of term for the remainder, which 

will be referred to as the augmented 1993 cohort. This data set was then used to build 

a CART tree modeling completion of term; all the variables available were used. Cross- 

validation was then used on this tree several times and the results plotted (not shown). 

Recall that cross-validation randomly splits the data set into pieces for validation; thus 

redoing the cross-validation typically gives a different plot. Because the data set is large, 

though, these plots are extremely similar. The last major drop in deviance occurs with an 

eleven-leaf tree, so this is the size chosen for the CART model of completion of term. The 

best eleven-leaf tree is presented in Figure 4. 

The root node contains the full data set; this group is then split on the sex variable 

(because this gives the largest drop in deviance). The larger collection of males has a 

higher proportion of persons completing their first term of service. The females then are 

further split on white race versus the others, with the white females further split on shorter 

terms of service (two or three years) versus the longer terms. Males also split on length 

of term (twice), education, AFQT score and finally on race. Three of the eleven leaves 

describe females, with the remaining eight describing males. The misclassification rate for 

this tree is 38.9%, as compared to 42% at the root. 

For comparison, a tree describing the current classification groups (for the augmented 

1993 cohort) is presented in Figure 5. This tree has a misclassification rate of 39.6%, in- 

correctly classifying 457 more individuals than the CART tree. Another way of comparing 

these two trees is to contrast their performances in predicting the completion of terms for 
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Figure 4: CART tree describing completion of term. 
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This tree gives the proportion of recruits completing their term in the 1993 (aug- 
mented) data. The smallest rate, 34.5%, was among while females with term lengths 
(L) greater than three; the largest rate, 78.4%, was among men with two-year terms. 
The misclassification rate is acheived by assigning to each recruit the predominant 
status in the leaf into which he or she falls. 

later yearly cohorts (recall that completion of term is known for two- and three-year term 

enlistees in 1994, and for two-year term enlistees in 1995). Any given tree can be used to 

predict the numbers to complete their terms in each leaf (call this the expected number, e,-, 

for leaf i). Simple counting then can be employed to find the actual numbers to complete 

their terms in the same leaves (call this the observed number, o,, for leaf i). Then the 

total number of errors in classification made by the tree is £,. |e,- - o,-|, the sum across the 
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Figure 5: Completion of term tree, current characteristic groups. 

Misclassification rate 
25429/64235=39.6% 

60% 
13013 

62.5% 
26355 

This is the analogous tree, using the current characteristic groups. Notice that the 
misclassification rate is slightly larger here than in the previous figure, and that the 
group sizes are less similar. 

leaves of the magnitudes of the differences between the numbers expected and the numbers 

observed. This in turn can be divided by n, the number of enlistees classified, to give a 

total percentage error. 

The 1994 cohort includes 27027 enlistees with two- or three-year terms. Using the 

measure just denned, the CART tree has a total percentage error of 0.8%, while the 

characteristic groups tree has a total percentage error of 4.8%. The 1995 cohort includes 

2388 enlistees with two-year terms. The total total percentage error for the CART tree is 
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1.9% and is 17.4% for the characteristic groups tree. It is expected that basing forecasts 

on the CART tree groupings given in Figure 4 should perform better than forecasts based 

on the characteristic groups tree in Figure 5. 

5    CART descriptions of re-enlistments 

This section describes two different CART descriptions of re-enlistment of non-prior 

service enlistees. The first of these uses a binary variable (0 means no, 1 means yes) to 

represent the re-enlistment decision. Like the completion of term variable, this decision is 

not known with certainty for all term lengths for the 1992 and later cohorts. This problem 

was handled in the same way as described above for completion of term. The 1991 six-year 

and 1992 five-year term enlistees were used to build a CART description of re-enlistment; 

this tree was used in turn to predict the decisions (assigned randomly) of 1993 five- and 

six-year term enlistees, resulting in a new augmented 1993 data set. 

The CART tree describing re-enlistment grew to 262 nodes, using the program defaults. 

The cross-validation plot (not shown) shows a relatively flat minimum for tree sizes 

from about 20 to 40 leaves, although most of the reduction in deviance is achieved with a 

tree size of 10. Accordingly, the best ten-leaf tree was grown and is presented in Figure 

6. The first split is on the race variable, with the second splits given by sex and CMF. 

Interestingly, for white males, the college fund variable separates enlistees into those with 

no college fund (of whom 23.6% re-enlist) versus those who do take the college fund (of 

whom 18.4% re-enlist); the re-enlistment rate is probably lower for this latter group to 

allow them to take advantage of their college funding. The tree also indicates that those 

with shorter terms tend to re-enlist at a higher rate than those with longer terms. 

CART was also used to describe a three-level variable involving re-enlistments of first 

term enlistees. Logically, each enlistee may 

• Neither complete term nor re-enlist, 

• Complete term but not re-enlist, or 

• Complete term and re-enlist. 
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Figure 6: Best ten-leaf CART tree for modeling re-enlistments. 
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This tree is best (in the cross-validation sense) for modeling re-enlistments. It is similar 
to, but not identical to, figure 4. 

It should not be possible to fail to complete the first term, yet still re-enlist. Because of the 

rules employed in interpreting the trailer records in the small tracking file, a small fraction 

of 1% of the full set of records actually indicated this behavior. These records were deleted 

for the CART modeling described below. 

Again, the 1991 and 1992 experience for five- and six-year term enlistees was used to 

predict the behavior (on this three-level variable) for the 1993 cohort. This augmented 

data set was then used to describe this three-level variable. The default tree for this model 

produced 248 terminal leaves (using 64,138 enlistees from the augmented 1993 data set). 
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A cross-validation plot shows a quite broad minimum, spanning trees with about thirty to 

seventy leaves, although most of the reduction in deviance is accomplished with fourteen 

leaves. This was chosen as the most practical size and CART was used to build the best 

fourteen-leaf tree, presented in Figure 7. 

Recall that the variable being modeled has three rather than two different possible 

outcomes. In any node, then, we have not only the total count of persons, but also how 

many of these fell into groups 1, 2 and 3 just defined. The plot of the tree now gives 

the total number of enlistees inside the node symbol itself, with three (rounded) decimal 

fractions presented below the node. In each case the ordering of these fractions is (group 

1, group 2, group 3). 

Thus, at the root in Figure 7 we can see that 64138 enlistees are included, of whom 

42% neither completed their term nor re-enlisted, 34% completed the first term but did 

not re-enlist, while the remaining 24% both completed their first term and re-enlisted. 

Because of the rounding, the fractions below the nodes may not exactly total 1.00. 

This rather large tree splits first on the college fund variable, with two- and three-year 

college fund recipients going left and four-year or no college fund going right. In the two- 

and three-year group (9668 enlistees), the majority (51%) complete their term, and only 

19% re-enlist. This group is then further split into the two-year term enlistees (left) versus 

the three-year term enlistees. Almost two-thirds of the two-year term enlistees complete 

their term, while only a plurality (47%) of the three-year people do the same. The three- 

year group is then split on sex, with (again) males much more likely to complete the first 

term. 

In the group including four-year or no college fund (54470 enlistees), most (44%) do 

not complete their first term, while 25% both complete the first term and re-enlist. This 

group is then split on race, with whites going left and all others going right. The whites 

are then split on sex, with the majority of white females (63% of 5916) not completing the 

first term, while only 43% of the white males fail to complete their first term. 

The white females then split on length of term, again with the shorter terms having a 

smaller probability of not completing the first term. The white males subsequently split 

(twice) on length of term, AFQT score and CMF. The non-whites (four-year or no college 

fund) also split on length of term and CMF. They produce the leaf (two- or three-year term, 
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Figure 7: CART tree modeling completion of term and re-enlistments. 
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This tree shows recruits with three outcomes: attrition, completion without re- 
enlistment, and completion and re-enlistment. Beneath each node are the proportions 
in those three groups, in that order. For example, among those with the two-year 
college bonus (coll2; leftmost node), 21% underwent attrition, 64% completed their 
term without re-enlisting, and 15% completed their term and re-enlisted. 

CMF of Administration, Maintenance, Medical, Service or Support, as well as Missing) 

which has the highest rate (42%) of both completing the first term and re-enlisting. These 

4033 enlistees include 421 with MOS (and therefore CMF) missing. 
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6    Describing early-term attrition 

DCESPER and others have observed that a large fraction of first-term attrition takes 

place in the very earliest months of the term. It was asked whether there were differences in 

early-term attrition rates between different sub-groups (by age, sex and so on) of recruits. 

We can show these early-term attrition rates by means of attrition profiles, graphs of 

attrition rates by month. Figure 8 shows attrition profiles from the 1993 data (unmodified) 

for the four race and sex sub-groups. (Here, as elsewhere, we have divided race into "white" 

and "non-white.") On the horizontal axis is the month of the term; on the vertical is the 

proportion of those who reached that month who dropped out during that month. (So, 

for example, "3%" in month eight indicates that 3% of those who completed month seven 

dropped out in month eight.) We have chosen race and sex because these turn out to be 

the best predictors of attrition in the early part of the term. 

The things to notice about this graph are, one, that every group shows a sharp peak 

of attrition in the first few months; two, that in each of the groups the attrition rate then 

settles down to a level that is more or less constant after about month nine; and three, that 

white females have both a higher peak and a higher "steady-state" level than the other 

three groups, which are close to indistinguishable. 

These observations are supported by a number of statistics. The proportions of recruits 

leaving within the first nine months are 12.6% for non-white males, 16.1% for non-white 

females, 18.0% for white males and 27.8% for white females. It is interesting to observe 

that non-white females have a lower attrition percentage than white males in the first nine 

months. Over 36 months, attrition proportions (this, of course, excludes two-year term 

recruits who finish their terms) for the same groups are, respectively, 35.7%, 42.3%, 40.7% 

and 62.1%. In these two cases, and elsewhere, we see that non-white males have the lowest 

rate, that white males and non-white females have roughly equal rates, and that white 

females have the highest attrition rate. 

The "steady-state" attrition rate — that is, the rate that the group "settles down" 

to after the peak — is seen to be similar for the first three groups. Among 1993 recruits 

completing their tenth month, the proportions that eventually left prematurely were 27.1% 

for non-white males, 32.7% for non-white females, 29.0% for white males and 50.0% for 
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Figure 8: Attrition Profiles, 1993 data, by race and sex. 
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This picture shows the rates of attrition by month, among males and females 
and whites and non-whites. Note the early peak in all groups, and the higher 
steady-state rate among white females. 

white females. These rates do appear to be fairly steady. There is no evidence of an 

increasing trend for the first three groups (based on linear regression); there is some slight 

evidence, perhaps, that the steady-state rate for white females may increase somewhat 

over time. 
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7 CART descriptions of nine-month behavior 

We are now in a position to construct CART trees of nine-month behavior. (We choose 

nine months simply by examining figure 8; a choice of eight of ten would not affect our 

conclusions materially.) In this case the two possible outcomes are survival through nine 

months, and attrition in or before the ninth month. The predictor variables, of course, are 

as before. 

Figure 9 shows the best ten-leaf classification tree from the 1993 data. Interestingly, 

in this tree there is only one leaf for all non-white recruits. Two leaves describe the white 

females and the remaining seven describe white males. Partly this is a consequence of 

stopping at ten leaves (in the twelve-leaf tree, the non-white males and non-white females 

are split). In this tree we see, as we expect, high attrition among white females, low 

attrition among non-whites, and medium values of attrition among white males. 

Another tree worth looking at is one where the race and sex variables are replaced 

by a single variable taking on the four age and sex combinations. In this tree (figure 10) 

the biggest decrease in deviance is achieved by first splitting off the white females from 

the other recruits. As before, these females have a high attrition rate. The second steps 

splits off the low-attrition non-white males, and the remaining parts of the tree describe 

the behavior of the white males and non-white females. 

8 Other Differential Factors 

Some of the difference in female attrition rates may be due to differential enlistment rates. 

In particular, the average length of term at sign-up is shortest for non-white males (3.52 

years in 1993); in the middle for white males (3.58) and non-white females (3.91); and 

longest for white females (an average of 4.06 years). Some of the gender difference can 

be explained by differences in CMFs, since these tend to have differing term-lengths and 

some CMFs are prohibited to women. However, the racial difference is a mystery to us. 

More than half of the men (54%) who joined the Army in 1993 signed up for terms of 

two of three years, but only about a quarter (28%) of women did so. Similarly, 24% of 

white females, but only 8% of non-white males, enrolled for terms of five or more years. 
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Figure 9: Best ten-leaf CART tree for nine-month attrition (1993 data). 
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Still, there is a real gender and race differential, even when differing term lengths and 

CMF distributions are taken into account. Among those signing up for three-year terms, 

the proportions completing are 66.3% for non-white males, 66.1% for non-white females, 

and 60.5% for white males, but only 45.6% for white females. (Among those with four-year 

terms, the corresponding percentages are 61.1%, 55.8%, 56.0%, and 36.6%.) 

9    Conclusions and Recommendations 

The current characteristic groups can be improved upon. We have suggested a new set 

of groups that reduce misclassification rate to a small extent and that should therefore be 
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Figure 10: Ten-leaf tree for nine-month attrition, race and sex categories 
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useful to the Army's stength management system. The bulk of the improvement probably 

comes from the inclusion of race information. Non-whites have lower attrition, higher term 

completion and higher re-enlistment rates than whites. Males have lower attrition, and 

higher completion and re-enlistemnt rates than females; part of this may be due to the 

increased propensity of women to sign up for long terms. While the best characteristic 

groups for predicting re-enlistment or nine-month are slightly different from those for 

predicting term completion, the race and sex pattern remains. The college bonus programs 

appear to have little influence on term completion or early-term behavior, though they do 

affect re-enlistment. AFQT scores, education level, and Career Management Field all serve 
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predictive roles as well. We recommend that the Army examine why women fare less well 

than men on average, perhaps by examining the reasons for attrition where those are 

known. Since there is a peak in attrition for all groups in the early months, those months 

would seem to be a good place for intervention strategies, intended to reduce attrition, to 

be aimed. 

23 



DISTRIBUTION LIST 

1. Research Office (Code 09) l 

Naval Postgraduate School 
Monterey, CA   93943-5000 

2. Dudley Knox Library (Code 013) 2 
Naval Postgraduate School 
Monterey, CA  93943-5002 

3. Defense Technical Information Center 2 
8725 John J. Kingman Rd., STE 0944 
Ft. Belvoir, VA  22060-6218 

4. Therese Bilodeau (Editorial Assistant) 1 
Dept of Operations Research 
Naval Postgraduate School 
Monterey, CA   93943-5000 

5. Prof. Samuel E. Buttrey (Code OR/Sb) 2 
Dept of Operations Research 
Naval Postgraduate School 
Monterey, CA  93943-5000 

6. Prof. Harold J. Larson (Code OR/Jc) 2 
Dept of Operations Research 
Naval Postgraduate School 
Monterey, CA  93943-5000 

24 


